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ABSTRACT: 

In a graph G = (V, E), a set SV(G) is a distance closed set of G if for each vertex uS and for each w

V – S, there exists at least one vertex vS such that d<S>(u, v) = dG(u, w). Also, S is a dominating set of 

G, if each vertex in V – S is adjacent to at least one vertex of S. Combining the above concepts, a 

distance closed dominating set of a graph G is defined as follows: A subset SV(G) is said  to be a 

Distance Closed Dominating (D.C.D) set if S is both distance closed and dominating set. The cardinality 

of a minimum distance closed dominating set of G is called the distance closed domination number of G 

and is denoted by γdcl(G). In this paper, algorithms to find the minimum distance closed dominating sets 

of some special classes of graphs are discussed.  
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INTRODUCTION:  

For a graph, let V(G) and E(G) denotes its vertex and edge set respectively. The degree of a vertex v in a 

graph G is the number of edges incident with v and is denoted by degG(v). The length of the shortest path 

between any two vertices u and v of a connected graph G is called the distance between u and v and it is 

denoted by dG(u, v). For a connected graph G, the eccentricity eG(v) = max{dG(u, v) : uV(G)}.  If 

there is no confusion, we simply use the notion d(v), d(u, v) and e(v) to denote degree, distance and 

eccentricity of v respectively for the connected graph G. The minimum and maximum eccentricities are 

called the radius and diameter of G, denoted by r(G) and d(G) respectively. If these two are equal in a 

graph, that graph is called self-centered graph with radius r and is called an r self-centered graph. Such 

graphs are 2-connected graphs.  If v is a vertex with e(v) = r(G), then v is called a central vertex of G and 

if e(v) = d(G), then v is called a peripheral vertex of G.  Also a vertex u is said to be an eccentric vertex 

of v in a graph G, if d(u, v) = e(v) in that graph. In general, u is called an eccentric vertex, if it is an 

eccentric vertex of some vertex. For vV(G), the neighbourhood NG(v) of v is the set of all vertices 

adjacent to v in G.  The set NG[v] = NG(v)   {v} is called the closed neighbourhood of v. Also, Ni(v) = 

{uV(G) / d(u, v) = i} is called the i
th 

neighbourhood of v.  A set S of vertices in a graph is said to be 

independent if no two vertices in S are adjacent. An edge e = (u, v) is a dominating edge in a graph G if 

every vertex of G is adjacent to at least one of u and v. One important aspect of the concept of distance 

and eccentricity is the existence of polynomial time algorithm to analyze them. The concept of distance 

and related properties are studied in [1] and [2].  

The concept of domination in graphs was introduced by Ore [8] in 1962. It is originated from the chess 

game theory which paved the way to the development of the study of various domination parameters and 

then relation to various other graph parameters.  A set DV(G) is called a dominating set of G if every 

vertex in V(G) –  D is adjacent to some vertex in D and the domination number γ(G) is the minimum 

cardinality of a dominating set.  Different types of dominating sets have been studied by imposing 

conditions on the dominating sets. The list of survey of domination theory papers are in [3], [4] and [5]. 
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PRIOR RESULTS: 

The concept of distance closed set is defined and studied in the doctoral thesis of Janakiraman [6] and the 

concept of distance closed sets in graph theory is due to the related concept of ideals in ring theory in 

algebra. The ideals in a ring are defined with respect to the multiplicative closure property with the 

elements of that ring. Similarly, the distance closed dominating set is defined with respect to the distance 

closed property and the dominating set of the graph. Thus, the distance closed dominating set of a graph 

G is defined as follows: 

 A subset SV(G) is said  to be a Distance Closed Dominating (D.C.D) set if 

1. S is distance closed and                       

2. S is a dominating set. 

 The cardinality of a minimum distance closed dominating set of G is called the distance closed 

domination number of G and is denoted by γdcl(G). 

Clearly from the definition, 1 ≤ γdcl ≤ p and the graph with γdcl = p is called a 0-distance closed 

dominating graph. The definition and the extensive study of the above said distance closed dominating 

sets in graphs are studied in [7]. The following are some important results proved in [8] has used here. 

Proposition 3.2.1: If T is a tree with number of vertices p ≥ 2, then γdcl(T) = p – k + 2, where k is the 

number of pendant vertices in T. 

Proposition 3.2.2: If G is a 2 self-centered graph with a dominating edge, then γdcl(G) = 4. 

Theorem 3.2.2: Let G be a graph of order p. Then γdcl(G) = 2 if and only if G has at least two vertices of 

degree p – 1. 

Theorem 3.2.3: Let G be a graph of order p. Then γdcl(G) = 3 if and only if G has exactly one vertex of 

degree p – 1.  

 

DOMINATION IN NETWORKS:  

At present, domination is considered to be one of the fundamental concepts in graph theory and its 

various applications to ad-hoc networks, biological networks, distributed computing, social networks and 

web graphs partly explain the increased interest. Such applications usually aim at selecting a subset of 

nodes that will provide some definite services such that every node in the network is ‘close’ to some node 

in the subset. The following examples show when the concept of domination can be applied to real-life 

problems. In this paper, algorithms to find D.C.D sets of some special classes of graphs are studied. Also, 

a general algorithm to find a D.C.D set of any connected graph G with a given radius r and diameter d is 

given.  

In general, the distance closed property in a graph can be checked in polynomial time.  However, finding 

the connected domination number of a graph G is NP-complete. Hence, finding a minimum distance 

closed dominating set in a general graph is NP-complete and so attempts are made to develop polynomial 

time algorithms for finding D.C.D sets in some special classes of graphs. In all the algorithms, the 

distance matrix of G is computed as a pre-processing step, whose time complexity is O(p
3
).  Further it is 

assumed that any graph G given as input is in the form of adjacency matrix and it is also assumed that the 

degrees of all vertices are part of the input. Hence, the complexity of each algorithm discussed in this 

chapter is given excluding the pre-processing time. 

 

ALGORITHM TO FIND A MINIMUM D.C.D SET OF A GRAPH G WITH RADIUS 1 

Input : Graph G with radius 1 

Output : D.C.D set of G 

 

Pseudocode: 

Step 1:  

 For every vertex vV(G), find e(v) = max{d(v, u) | uV(G)};  

 

Step 2: 

 Set C(G) ={vV(G) | e(v) = 1}; 
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Step 3: 

If (|C(G)| == 1) then  

D = {u, v, w}, where vC(G) and u, w are any two non-adjacent vertices of V(G) – v; 

Else D = {u, v}, where u, v C(G); 

Step 4:  

Output D; // D is a D.C.D set of G 

Step 5: 

 Exit 

 

VALIDITY OF THE ALGORITHM: 

 Validity of the above algorithm directly follows from Theorems 3.2.2 and 3.2.3. 

 

COMPLEXITY OF THE ALGORITHM: 

Since the distance matrix of G is given in t pre-processing step, the eccentricity of every vertex v in G in 

step 1 is computed in O(p
2
) units of time. In step 2, selecting the central vertices among the p vertices can 

be done in O(p) time.  Also, the if loop in step 3 takes O(p) units of time.  Thus the overall complexity of 

the algorithm is O(p
2
) 

 

 

 

 

 

 

 

 

 

 

 

 

                (G1)                                                                (G2) 

 

 

Here, both the graphs G1 and G2 are of radius 1 and diameter 2. The graph G1 has C(G) = {v} and the set 

{u, v, w} forms a D.C.D set for G1. Also the graph G2 has C(G) = {u, v} and the set {u, v} forms a D.C.D 

set for G2. 

 

ALGORITHM TO FIND A D.C.D SET OF A 2 SELF-CENTERED GRAPH: 

Input : 2 self-centered graph G 

Output : D.C.D set of G 

 

Pseudocode: 

 

Step 1:  

 Select a vertex v in G with minimum degree; 

Step 2:  

 For i=1 to 2, do 

 {  

    Find Ni(v) = {uV(G) | d (v, u) = i}; 

 } 

 

Step 3:  

 Set R = {uN1
(v) | N(u)N2(v)  }; // R is the set of all vertices in N1(v) having  

u 

v 

w

w 

u 

v 
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                                                                                                                                  // neighbours in N2(v) 

Step 4:  
Choose u in R with maximum degree and w in N(u)N2(v) with maximum degree; 

Step 5:  
  Set E(u) = {u

*V(G) | d (u, u
*
) = 2};   // E(u) is the set of all eccentric   

                                                                            //   vertices of u 

Step 6:  

 Set D = {v, u, w, u
*
}, where u

*E(u); 

Step 7:  

 If (N[D] == V(G)) Return D as a D.C.D set of G; 

Step 8:  

 Set S = N(D)N2(v); Select a vertex z in S having maximum degree; 

Step 9:  

 Set D = D {z} and goto Step 7; 

Step 10: 

 Exit  

 

VALIDITY OF THE ALGORITHM: 

For any 2 self-centered graph G, γdcl(G) = 4 if G has a dominating edge (proposition 3.2.2). Otherwise, 

γdcl(G) ≥ 4 and the extra added vertices are only for the sake of domination. In step 6, the set D gives the 

distance closed set of G. If D dominates G, then D becomes the D.C.D set of G. Since the vertex v 

dominates all the vertices in N1(v), the maximum degree vertex is chosen from N(D)N2(v) and added 

to D until D dominates G. Therefore, the final set D becomes a D.C.D set of G. 

 

COMPLEXITY OF THE ALGORITHM: 

1. Since the adjacency matrix of G is given as a part of input, selecting a vertex with minimum degree 

in G takes O(p) units of time. The for loop in step 2 gives the neighborhood sets of v and it needs 

O(p) time.  

2. Each of the steps 3 to 5, for finding the other elements of D, takes O(p) units of time and forming 

the set D from the known values need constant time.  

3. Testing whether D is a dominating set or not is done in steps 7 to 9 and it needs [O(p) + O(p) + 

constant)] = O(p) units of time.  

   Therefore, the above algorithm runs in O(p) units of time. 

 

 

 

 

 

 

 

 

 

                                                            

  

  

 

This is a self centered graph of diameter 2 with minimum D.C.D set {v, u, w, u
*
}, where u

*E(u) and 

also v and w are eccentric nodes of each other 

 

ALGORITHM TO FIND A MINIMUM D.C.D SET OF A TREE: 

 

Input : Tree T with p ≥ 2 

w

w 

u

w 

v

w 

u
* 
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Output : D.C.D set of T 

 

Pseudocode: 

Step 1:  
 For every vertex uV(T), find e(u) = max{d(u, v) | vV(T)}; 

Step 2:  
 Set d = max{e(u) | uV(T)}; 

Step 3:  
 Select a vertex v with e(v) = d, where degree of v is maximum among such vertices; 

Step 4:  

  Set T
1
 = BFS(v);   // T

1
 is the spanning tree rooted at v resulting from BFS  

 

Step 5:  
 In T

1
, find a path P of length d, rooted at v, where P is {v = x1, x2… xd+1}; 

Step 6:  
 Set D = {x1, x2 … xd+1}, S = V – D; 

Step 7:  

 For each w   S do 

              {  

                   If (deg(w) ≥ 2) then  

       D = D{w}; 

  } 

Step 8:  
 Output D;  // D is the minimum D.C.D set of T 

Step 9:  

 Exit  

 

VALIDITY OF THE ALGORITHM: 

If T is a tree with number of vertices p ≥ 2, then γdcl(T) = p – k + 2, where k is the number of pendant 

vertices in T (from proposition 3.2.1). Thus, if D is a D.C.D set of T, then D must contain exactly two 

pendant vertices of T and all those vertices with degree greater than or equal to 2. Clearly the path P 

given in step 5 contains exactly two pendant vertices of T and therefore the set D. Also in step 7, we are 

adding those vertices of V – D with degree greater than or equal to 2 to D. Hence, the above algorithm 

gives the exact bound for γdcl(T). 

 

COMPLEXITY OF THE ALGORITHM: 

1. Steps 1-3: The eccentricity of every vertex v of T is computed in O(p
2
) time. Finding the maximum 

eccentricity d is done in O(p) units of time and also selecting a maximum degree vertex v among all 

such vertices with eccentricity equal to d takes O(p) time. 

2. Steps 4-7: Finding a path P of length d rooted at v using BFS algorithm takes O(p) units of time and 

assigning those vertices of P in D takes a constant time. Also, the for loop in step 7 needs O(p) 

units of time.  

  Thus the total complexity of the algorithm is O(p
2
).  
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This is a tree with radius 3 and diameter 5. Here, v is a vertex with eccentricity e(v)=5=d(G). Now find a 

path of length d=5 rooted at v by using BFS. Then the set {x1, x2, x3, x4, x5, x6} forms a minimum D.C.D 

set for G. 

   

ALGORITHM TO FIND A D.C.D SET OF A CONNECTED GRAPH G WITH RADIUS r AND 

DIAMETER d = 2r (OR) d = 2r – 1 

 

Input : Connected graph G with radius r and diameter d = 2r (or) d = 2r – 1  

Output : D.C.D set of G 

 

Pseudocode: 

Step 1:  

 For every vertex uV(G), find e(u)= max{d(u, v) | vV(G)}; 

Step 2:  

 Set d = max{e(u) : uV(G)}; 

  

 Step 3: 

 Select a vertex v with e(v) = d, where degree of v is maximum among such vertices; 

Step 4:  

 Set S = {v}, i = 1; 

Step 5:  
 If (i ≥ d) then 

    goto step 7; 

          Else  

   Set T = Ni(v), S
1 
=  , k = 1; 

 Step 6:  

    Choose a vertex vi
(k)

 from T with maximum degree;  

   S
1
 = S

1
  {vi

(k)
}; 

   If (N(S
1
) == Ni+1(v)) then  

              { 

      S = S  S
1
;     

      i = i +1;  

      goto step 5; 

   } 

   Else  

   { 

      T = T- S
1
; 

      k = k+1;  

      goto step 6; 

   } 

Step 7:  

 Set D = S{w}, where wNd(v);     

Step 8:  

 Output D; // D is a D.C.D set of G 

Step 9: 

 Exit 

 

VALIDITY OF THE ALGORITHM: 

If G is a connected graph with radius r and diameter d = 2r (or) d = 2r – 1, then the vertices in the 

diametral path form a distance closed set of G. Therefore, a vertex with eccentricity d is taken for getting 
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a diametral path of G in step 3. In step 6, the set S covers all Ni(v) (i =1 to d – 1). Then clearly D = S

{w}, where wNd(v) forms a D.C.D set of G.  

 

COMPLEXITY OF THE ALGORITHM: 

Steps 1-3 need O(p
2
) time to find a maximum degree vertex v with e(v) = d. The if loop in step 5 is 

executed in O(p) units of time and all other steps for assigning the given values take constant time. Thus 

the complexity of the above algorithm is O(p
2
).  

 

 

 

 

 

 

 

 

 

 

 

                                                G 

 

This is a graph with radius 2 and diameter 3. Here starting from the vertex u with e(u) = d=3, the set {u, 

v, w, y} forms a minimum D.C.D set for G. 

 

GENERAL ALGORITHM TO FIND A D.C.D SET OF A GRAPH G WITH RADIUS r AND 

DIAMETER d 

 

Input : Connected graph G with radius r and diameter d 

Output : D.C.D set of G 

 

Pseudocode: 

Step 1:  

 Set D1 = {vV(G) | v is a cut vertex of G}; 

Step 2:  

 For every uV(G), find  

 e(u) = max{d(u, v) | vV(G)}; 

            E(u) = {vV(G) | d (u, v) = e(u)};   

 Set D2 = {vV(G) : |E(v)| = 1};   // D2 is the set of all vertices in G having  

                                                                                                                 // unique eccentric vertices  

Step 3: 

 Set D = D1D2; 

 

Step 4: 

 If (D == V(G)) then  

    Return D;             // G is a 0- distance closed dominating graph. 

Step 5: 

 Set Q = {v V(G) | e(v) = r and E(v) contains at least one vertex with  

                            eccentricity d}; 

Step 6: 
From Q, choose a vertex v with maximum degree. Let vr be the peripheral vertex in Nr(v) and P 

the r-path rvvvvv  ...  , , 210 , where each vi Ni(v),          i = 1 to r; 

 Set D = {v, v1, v2 … vr};    // Store the vertices of the path in D 

u 

v 

w 

y 
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Step 7: 

 Set S = {uN1(v) – {v1} | u is not adjacent to v1}, 

          T = {uN(D) | u has exclusive domination vertices}, 

      R = (V – N[D])   (ST{v}); 

Step 8:  

 For each vi D, i = r to 1 do 

 { 

    Find vi
* 
in R such that vi

*E(vi);  

     If (vi
*
D) then 

    { 

       Set Pi as the shortest path from v to vi
*
 and store its vertices in Di; 

                 Set D = D Di;        

    } 

 } 

Step 9:  

 If (N[D] == V(G)) then  

     Return D;  

Step 10: 

 Set U = V – D; 

 

Step 11:  
 For i = r-1 to 1 do 

 { 

    

  If (Ni+1(v)U    ) then  

              { 

 Set Si = {uNi(v)U | u has exclusive domination vertices in Ni+1(v)U}; 

Step 12: 

       If (N(Si) == Ni+1(v)   U) then  

           D = DSi; 

           Else 

       { 

           Choose a maximum degree vertex ui in Ni(v)   (U – S); 

          Set S = S  {ui} and go to step 12; 

      } 

              } 

    Set U = U – Ni+1(v), i = i-1;  

           } 

Step 13:  
 Output D; // D is the distance closed dominating set of G. 

Step 14:  

 Exit 

 

VALIDITY OF THE ALGORITHM: 

According to Theorem 1.4.2, steps 1-4 check whether the given graph G is a 0-distance closed 

dominating graph. If not, then any central vertex v with maximum degree in which E(v) has a peripheral 

vertex vr is taken as a root vertex. In step 6, an r-path P connecting v to vr is obtained and its vertices are 

stored in D. Also, their eccentric vertices (if not in D) are included in D. Hence, the final set D in step 8 

gives the distance closed set for any graph G. In steps 9-12, the domination property is checked and the 

uncovered vertices are added to D to obtain a D.C.D set of G.   
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COMPLEXITY OF THE ALGORITHM: 

1. Steps 1-4, which check whether G is a 0-distance closed dominating graph or not, takes O(p
2
) units of 

time. Forming a set D with the vertices in a path rooted at a central vertex given in step 6 takes O(p) 

units of time.  

2. Step 8 checks the distance closed property in D and it takes O(p
2
) units of time. The for loop in steps 

11-12 checks the domination property of D and it takes O(p) units of time.  

         Thus the complexity of the above algorithm is O(p
2
). 

 

CONCLUSION: 

In this paper, algorithms to find a distance closed dominating set of some special classes of graphs are 

proposed and their complexities are studied.  Also, a general algorithm to find the distance closed 

dominating set of any graph G with a given radius r and diameter d is proposed. The validity and 

complexity of each of these algorithms are also given and they can be checked in polynomial time. Since 

the distance closed dominating set is distance preserving, in most of the cases, it is useful to find a sub-

network in a given communication network, which is fault tolerant. It is not true that all graphs have at 

least one distance preserving subset which is a dominating set. Also, every graph has at least one distance 

closed dominating set even if it does not have a distance preserving dominating set. In those cases, we 

can cover at most all the vertices using this distance closed domination. Hence, this concept is very useful 

to analyze the worst case complexity in fault tolerance. Also, the above obtained results are used to 

analyze the behavior of different communication networks in different situations. In particular, in fault 

tolerance analysis of networks, parallel architecture designing and signal processing. 
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