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ABSTRACT– Control of time delay systems has been a challenging problem for the control engineers. The 

issues have been inviting attention of many researchers, especially in the context of robust control. The presence 

of delay in the systems makes closed-loop stabilization difficult and degrades tracking performance. This paper is 

concerned with the robust H∞control of a non-holonomic wheeled mobile robot with time delay by LMI approach. 

Also this paper gives a linearized model of the wheeled mobile robot (WMR) in the presence of disturbances, 

uncertainties and delays. A WMR is a wheeled vehicle which is capable of autonomous motion and is extensively 

used in lots of dangerous and heavy jobs, including the transportation of nuclear waste, mines, lunar exploration 

etc. A robust controller was synthesized for this system using LMI algorithms. It can be seen that, as the value of 

the of time delay increases, settling time of a WMR also increases but the steady state error remains constant. 

Also it can infer that, for larger values of delays the difference between the settling time and the delay value 

remains almost constant Simulation results show that the WMR system is stable with the proposed LMI  H∞ 

controller. 

Keywords: H∞ control, LMI control, robust control, time delay system, WMR. 

INTRODUCTION 

Wheeled Mobile Robot is a multi-input multi output system having interesting importance in both scientific 

research and practical applications. One of the promising applications is extended for the assistance of disabled, 

handicapped or elderly people. In control field, WMR researchers have focused on establishing mathematical 

modeling as well as control aspects such as trajectory tracking and stabilization. Unscented Kalman Filter (UKF) 

arithmetic in mobile robot control has been applied in [1] and gained better control effect, but its complexity 

limits its practical application. Ref[2]-[3] introduced intelligent arithmetic in this field and avoided establishing 

the precise mathematical models. But the design of control rules are highly dependent on personal experience, 

and its preciseness and stability are not satisfactorily addressed. In [4]-[5] research in WMR has been focused on 

tracking control, but the effect of disturbances and model uncertainties were not properly dealt with. In [6], a local 

feedback  H∞ robust controller has been designed for a wheeled mobile robot with time delay but the model 

uncertainties and the effect of disturbances were not taken into account. Moreover the effect of time delay with 

different types of uncertain disturbance were not discussed. A robust LMI  H∞ controller for WMR has been 

synthesized in [7] for a wheeled mobile robot having uncertainties in the disturbance, but the time delay was not 

considered. Since the main emphasize of this paper is on the control issues of uncertain time delay system,  a 

robust LMI  H∞ controller is designed for a WMR system considering both time delay and model uncertainty 

simultaneously.  

 

 WMR is a complex unstable nonlinear coupled system with model uncertainties and time delay. This time delay 

is due to the position signal from robot to sensor and the execute signal from actor to robot. AS-R3-Degree of 

freedom differential WMR is a platform where new stabilization on robotic field can be tested. In this paper based 

on this platform, a linearized mathematical model with uncertainty and time delay is derived. The low frequency 

disturbances are assumed to act on the state of the system. Then, based on LMI, a robust  H∞ feedback controller 
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is designed with first and second order uncertain disturbance. Finally, simulation is performed and the result 

shows the efficiency of the method. 

 

 The paper is organized as follows: Section II deals with the modeling of WMR in states pace form.  Section III 

discusses the design methodology and the performance index calculation. Section IV gives the WMR H∞ control 

scheme which include time delay and uncertainties. Section V is devoted to present numerical examples. Section 

VI gives the simulation results and the analysis of it. Finally Section VII concludes the paper, followed by the 

references used. 

2. MODELING OF WMR 

 
Fig.1 Geometrical model of the wheeled mobile robot 

 

Fig.1 shows a schematic of the WMR in the X-Y coordinate axis. It consists of three modules, including drive 

module, control module, and sensor module which are connected and fixed through bolts. The robot keeps its 

balance by three wheels: two front wheels (1-2) are driving wheels and one rear wheel (3) is the steering wheel. 

The driving wheels are driven by two independent DC motors which act as the actuators. 𝐹is the projection of 

mass center of the robot.𝑃1is the centre of two front wheels of the robot. 𝑙𝑓 is the distance between point 𝑃1 and 

point 𝐹. 𝜃𝑃 is the heading angle of the robot. 𝑣𝑝 is the speed at 𝑃1. 𝜔is the angular speed of WMR. 𝑣1and 𝑣2are the 

speed of left and right driving wheels respectively . 𝛼is the angle of the steering wheel with the robot .This 𝛼 will 

appear in the model as a steering command applied . The forward and rotational motions of WMR are facilitated 

by the control of 1 and 2.𝑣𝑝can be written in terms of 𝑣1,𝑣2 as  𝑣𝑝 =
𝑣1+𝑣2

2
. Similarly 𝜔 can be expressed as𝜔 =

𝑣2−𝑣1

2𝑏
 

Then  =𝜃 𝑝 = 𝑣𝑝 sin 𝛼 

Let (𝑥𝑃,𝑦𝑝) be the coordinates at 𝑃1 and (𝑥𝑓 ,𝑦𝑓) the coordinates at 𝐹 at a given point in time t. When the robot is 

moving at a particular speed 𝑣𝑝 , the x and y axis speed at  𝑃1can be expressed as: 

 𝑥 𝑝 = 𝑣𝑝𝑐𝑜𝑠𝜃𝑝  

(1) 
 𝑦 𝑝 = 𝑣𝑝𝑠𝑖𝑛𝜃𝑝  

The acceleration variables obtained from Eqn(1) are written as :  

 𝑥 𝑝 = 𝑣 𝑝𝑐𝑜𝑠𝜃𝑝 − 𝑦 𝑝𝜔 

(2) 
 𝑦 𝑝 = 𝑣 𝑝𝑠𝑖𝑛𝜃𝑝 + 𝑥 𝑝𝜔 

Now the relation between𝑃1and 𝐹 is 

 𝑥𝑓 = 𝑥𝑝 − 𝑙𝑓𝑐𝑜𝑠𝜃𝑝  (3) 
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 𝑦𝑓 = 𝑦𝑝 − 𝑙𝑓𝑠𝑖𝑛𝜃𝑝  

The acceleration variables obtained from Eqn(3) are written as: 

 𝑥 𝑓 = 𝑥 𝑝 + 𝑙𝑓𝜔
2𝑐𝑜𝑠𝜃𝑝 + 𝑙𝑓𝜔 𝑠𝑖𝑛𝜃𝑝  

(4) 
 𝑦 𝑓 = 𝑦 𝑝 + 𝑙𝑓𝜔

2𝑠𝑖𝑛𝜃𝑝 − 𝑙𝑓𝜔 𝑐𝑜𝑠𝜃𝑝  

Substituting Eqn(2) in Eqn(4)  

 𝑥 𝑓 = 𝑣 𝑝𝑐𝑜𝑠𝜃𝑝 − 𝑦 𝑝𝜔 + 𝑙𝑓𝜔 𝑠𝑖𝑛𝜃𝑝 + 𝑙𝑓𝜔
2𝑐𝑜𝑠𝜃𝑝  

(5) 
 𝑦 𝑓 = 𝑣 𝑝𝑠𝑖𝑛𝜃𝑝 + 𝑥 𝑝𝜔 − 𝑙𝑓𝜔 𝑐𝑜𝑠𝜃𝑝 + 𝑙𝑓𝜔

2𝑠𝑖𝑛𝜃𝑝  

The above relations denoted the kinematics of the system. Now to arrive at the dynamics of the WMR, let 𝑇1  and 

𝑇2 be the driving torques on left and right front wheels of the WMR. The accelerations of the system depend not 

only on the inputs but are acted upon by disturbance. Let 𝑢=[ 𝑢1  𝑢2]𝑇  be the control input vectors. Uncertain 

disturbance vector 𝑤 = [𝑤1  𝑤2]𝑇denotes the disturbance put on the 𝑣𝑝   and. 

Then  𝑣 𝑝 = 𝛽1𝑢1 + 𝛽3𝑤1𝜔 = 𝛽2𝑢2 + 𝛽4𝑤2  

where 𝛽1 =
1

𝑀𝑟
 ,  𝛽2 =

𝑏

𝐽𝑟
 ,  𝛽3 =

1

𝑀
 ,  𝛽4 =

1

𝐽
   with 𝑟 representing the radius of the wheel, 𝑀 the mass of  the 

WMR ,    𝐽 the moment of inertia with respect to the centre of mass 𝐹 and 2𝑏 the length of the wheel axis. 

Substituting the above expressions in Eqn (5) which yields 

𝑥 𝑓 = 𝛽1𝑢1 cos 𝜃𝑝 + 𝛽3𝑤1𝑐𝑜𝑠𝜃𝑝 − 𝑦 𝑃𝜔 + 𝑙𝑓𝛽2𝑢2𝑠𝑖𝑛𝜃𝑝 + 𝑙𝑓𝛽4𝑤2𝑠𝑖𝑛𝜃𝑝

+ 𝑙𝑓𝜔
2𝑐𝑜𝑠𝜃𝑝  

(6) 
𝑦 𝑓 = 𝛽1𝑢1𝑠𝑖𝑛𝜃𝑝 + 𝛽3𝑤1𝑠𝑖𝑛𝜃𝑝 + 𝑥 𝑝𝜔 − 𝑙𝑓𝛽2𝑢2𝑐𝑜𝑠𝜃𝑝 − 𝑙𝑓𝛽4𝑤2𝑐𝑜𝑠𝜃𝑝

+ 𝑙𝑓𝜔
2𝑠𝑖𝑛𝜃𝑝  

To accommodate the time delay of the system, a matrix 𝐴𝑑  is introduced in the system. Causes of Time delay in 

WMR system are 

(a) In local controller, position signal from robot to sensor and the execute signal from actor to robot cause time  

      delay. 

(b)In remote network controller, the signal transmission causes time delay. 

       The state variables of the system are taken as  𝑥 = (𝜃𝑝  𝑥 𝑓  𝑦 𝑓  𝜃 𝑝)𝑇 which are angular displacement, x axis  

        Speed at 𝐹, y axis speed at 𝐹 and angular speed. Table 1.shows the nominal values of the WMR parameters 

        [6]. 

Table 1.Parameters of the WMR system 

Parameter Nominal Value 

𝑙𝑓  0.09 𝑚 

𝑟 0.105 m 

M 25 kg 

J 0.5512 𝑘𝑔𝑚2 

2b 0.41 m 
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Linearizing the model around 𝑦 𝑓 = 0.01and 𝜃 𝑝 = 0.0175, the state space representation of the nominal open loop 

system is in the form 

 𝑥 = 𝐴1𝑥 + 𝐴𝑑𝑥 𝑡 − 𝜏 + 𝐵1𝑤 + 𝐵1𝑢 

(7) 
 𝑦 = 𝐶1𝑥 

Where 𝐴1 =  

0 0 0 1
0 0 −0.0175 −0.01
0 0.0175 0 0
0 0 0 0

  𝐴𝑑 =  

0.3 0 0 0
0.1 0.2 0 0
0.1 0 0.2 0
0 0 0 0.2

   

 𝐵1 =  

0 0
0.04 0

0 −0.163
0 1.814

 𝐵2 =  

0 0
0.381 0

0 −0.319
0 3.542

 𝐶1 =  
0.01 1 0 0

0 0 0 1
  

The nominal open loop system is unstable with all the poles on the imaginary axis. 

3. DESIGN METHODOLOGY 

For the above WMR system a robust controller has to be designed using LMI algorithms. A Lyapunov function 

candidate has to be selected for the construction of the linear matrix inequalities. 

A Lyapunov function candidate for the system represented by Eqn(7) is given by 

 
𝑉 𝑥, 𝑡 = 𝑥 𝑡 𝑇𝑃𝑥 𝑡 +  𝑥 𝜎 𝑇𝑄𝑥(𝜎)𝑑𝜎

𝑡

𝑡−𝜏

 (8) 

where 𝑃, 𝑄 ∈ 𝑅𝑛𝑥𝑛  are positive definite symmetric matrices [8]. 

If 𝑃 > 0, 𝑄 > 0 satisfies𝑉  𝑥, 𝑡 < 0for every x satisfying Eqn(7), then the system (7) is stable, i.e., 𝑥 𝑡 → 0  as 

𝑡 → ∞ 

Let 𝑢 𝑡 = 𝐾𝑥(𝑡), then the resulting closed loop system is  

 𝑥 =  𝐴1 + 𝐵2𝐾 𝑥 𝑡 + 𝐴𝑑𝑥 𝑡 − 𝜏 + 𝐵1𝑤 𝑡  (9) 

The time derivative of 𝑉 𝑥, 𝑡 along the trajectory of the system represented by Eqn(9) is given by           

𝐿 𝑥, 𝑡 = 𝑉 (𝑥, 𝑡) 

= 𝑥(𝑡)𝑇𝑃  𝐴1 + 𝐵2𝐾 𝑥 𝑡 + 𝐴𝑑𝑥 𝑡 − 𝜏 + 𝐵1𝑤 𝑡   
  +  𝐴1 + 𝐵2𝐾 𝑥 𝑡 + 𝐴𝑑𝑥 𝑡 − 𝜏 + 𝐵1𝑤 𝑡  𝑇𝑃𝑥 𝑡 + 𝑥 𝑡 𝑇𝑄𝑥 𝑡 − 𝑥 𝑡 − 𝜏 𝑇𝑄𝑥(𝑡 − 𝜏) 

Introduce the following performance measure for disturbance attenuation 

 
𝐽 =   𝑧𝑇 𝑡 𝑧 𝑡 − 𝛾2𝑤𝑇 𝑡 𝑤 𝑡  𝑑𝑡

∞

0

  

This can be rewritten 

as 

 

  𝐽 ≤ [   𝑧𝑇 𝑡 𝑧 𝑡 − 𝛾2𝑤𝑇 𝑡 𝑤 𝑡 + 𝐿 𝑥, 𝑡  𝑑𝑡
∞

0

  

Substituting 𝑧(𝑡) and 𝐿(𝑥, 𝑡) in the above Eqn it can be written as  

𝐽 ≤    𝐶𝑥 𝑡  𝑇 𝐶𝑥 𝑡  − 𝛾2𝑤𝑇 𝑡 𝑤 𝑡 + 𝑥(𝑡)𝑇𝑃  𝐴1 + 𝐵2𝐾 𝑥 𝑡 + 𝐴𝑑𝑥 𝑡 − 𝜏 + 𝐵1𝑤 𝑡  

∞

0

+   𝐴1 + 𝐵2𝐾 𝑥 𝑡 + 𝐴𝑑𝑥 𝑡 − 𝜏 + 𝐵1𝑤 𝑡  𝑇𝑃𝑥 𝑡 + 𝑥 𝑡 𝑇𝑄𝑥 𝑡 − 𝑥 𝑡 − 𝜏 𝑇𝑄𝑥(𝑡 − 𝜏) 𝑑𝑡 

From this performance measure inequality, the linear matrix inequality for the WMR system can be expressed  as:   
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 𝐴1𝑋 + 𝐵2𝑌 𝑇 + 𝐴1𝑋 + 𝐵2𝑌 + 𝑄 𝐵1  𝐶1𝑋 𝑇 𝐴𝑑𝑋

𝐵1
𝑇 −𝛾𝐼 0 0

𝐶1𝑋 0 −𝛾𝐼 0

𝑋𝐴𝑑
𝑇 0 0 −𝑄  

 
 
 

< 0 
(10) 

𝑋 > 0 

where𝑋(=X
T
),𝑄 and  𝑌 are the matrices and  is the H∞ performance attenuation bound. Using LMI tool box in 

MATLAB® we can get suited matrix 𝑋 and 𝑌 by the MATLAB code X=dec2mat(lmis,xfeas,x) and 

Y=dec2mat(lmis,xfeas,y). Then a state feedback robust H∞ controller )(txYXu I  can be obtained to guarantee 

the stability of the system [9]. 

4. WMR H∞ CONTROL SCHEME 

The  H∞control scheme for the WMR is shown in Fig. 2 which depicts the output feedback structure of the 

uncertain plant with time delay .In order to get a robust controller, the modeling errors, parameter uncertainties 

etc.  are also to be considered. For the WMR system, the robot’s parameters are subjected to variations and hence 

uncertainties arise in the system modeling. To accommodate the parameter variations and nonlinearities w is 

acted on by unstructured weighting 𝑊𝑊 . 

 
Fig 2  Augmented structure of uncertain plant with time delay. 

Let 𝑤𝑖  be a two input disturbance assumed to be acting on the state. These disturbances on the plant are by nature 

of low frequency. Let 𝑊𝑊  be the low frequency disturbance weighting for the input𝑤𝑖 . Then  𝑤 = 𝑊𝑊𝑤𝑖  

The  𝑊𝑊  can be represented as  

 𝑊𝑊 = 𝐶𝑊(𝑠𝐼 − 𝐴𝑊)−1𝐵𝑊 + 𝐷𝑊 (11) 

Then the state space matrices of the transfer function [𝐴𝑊,𝐵𝑊 ,𝐶𝑊 ,𝐷𝑊] can be obtained.   

Now consider the regulated or controlled output 𝑧1 

Then   𝑧1 = 𝜑𝑥 where the regulated matrix corresponding to the state can be selected as 𝜑 = 𝐶1 

Let 𝑥𝑤  correspond to the states of the low frequency disturbance of (11). 

Then 𝑥 𝑤 = 𝐴𝑤𝑥𝑤 + 𝐵𝑤𝑤𝑖   

(12) 
 𝑤 = 𝐶𝑤𝑥𝑤 + 𝐷𝑤𝑤𝑖  

Substituting Eqn  (12)  in Eqn (7) we get  

 𝑥 = 𝐴1𝑥 + 𝐴𝑑𝑥 𝑡 − 𝜏 + 𝐵1 𝐶𝑤𝑥𝑤 + 𝐷𝑤𝑤𝑖 + 𝐵2𝑢 

 
 𝑥 𝑤 = 𝐴𝑤𝑥𝑤 + 𝐵𝑤𝑤𝑖   
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The augmented state space for the uncertain plant is as in (13)  

 
 
𝑥 
𝑥 𝑤

 = 
𝐴1 𝐵1𝐶𝑊

0 𝐴𝑊
  

𝑥
𝑥𝑤

 + 
𝐵1𝐷𝑊 𝐵2

𝐵𝑊 0
  

𝑤𝑖

𝑢
 +𝐴𝑑𝑥 𝑡 − 𝜏  

(13) 
 𝑧1 = 𝜑𝑥 

5. NUMERICAL EXAMPLES 

As mentioned earlier, an LMI  H∞ controller is synthesized for the WMR system with time delay. Here we are 

considering two cases. In the first case we are designing a robust controller for the system when the unstructured 

uncertainty weighting𝑊𝑊  is a first order Transfer function while in the second case a second order Transfer 

function 𝑊𝑊  is applied to it. 

 Case 1   when the unstructured uncertainty weighting𝑊𝑊  is a first order Transfer function 

  Let 𝑊𝑊=
400

𝑆+400
 𝐼=𝐶𝑊  (𝑠𝐼 − 𝐴𝑊)−1𝐵𝑊 + 𝐷𝑊  and the values of 𝐴1,𝐴𝑑 ,𝐵1&𝐵2   are as given by   Eqn (7) .Then 

the state space matrices of the transfer function [𝐴𝑊 , 𝐵𝑊 ,𝐶𝑊 ,𝐷𝑊  ] can be obtained.   

Now an H- infinity controller is synthesized in MATLAB® with the help of LMI solvers using Eqn (10). The 

closed loop responses of the system for different values of delay at optimum value of disturbance attenuation 

bound  𝛾𝑜𝑝𝑡 were plotted. 

Case 2   when the unstructured uncertainty weighting𝑊𝑊  is a second order Transferfunction 

 Let 𝑊𝑊=
400

𝑠2+20𝑠+400
 𝐼=𝐶𝑊  (𝑠𝐼 − 𝐴𝑊)−1𝐵𝑊 + 𝐷𝑊 

As in the previous case here also an H- infinity controller is synthesized in MATLAB® with the help of LMI 

solvers. 

6.SIMULATION RESULTS AND DISCUSSION 

The robust controller is synthesized inMATLAB® with the help of LMI solvers. Fig 3 shows the closed loop 

response of the given WMR system with𝑊𝑊=
400

𝑆+400
 𝐼  and the delay 0 sec. From this figure it can be seen that the 

given WMR system is stabilized by the proposed LMI  H∞ controller. Here the optimum value of gamma is found 

to be 0.146. Fig 4 depicts the closed loop response of the above system with different values of delays say 0.5 

sec,1 sec,3sec and 5 sec respectively.                                                                                
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Fig.3 Closed loop response of the given WMR system with 𝑊𝑊 =
400

𝑆+400
𝐼 and delay 0 sec Here also it can be seen 

that the WMR system is stable with the proposed  H∞ controller. Table 2 gives the Performance specification of 
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the above WMR system with 𝑊𝑊=
400

𝑆+400
𝐼    with optimum value of disturbance attenuation bound at different 

values of time delay  

Table 2: Performance specification of the WMR system with 𝑊𝑊=
400

𝑆+400
𝐼    having different values of time delay. 

Delay 

(sec)  

 opt=0.146 

Settling time(sec) 
Steady state 

error 

0 1.09 -0.0213&0 

0.1 1.1 -0.0213&0 

0.5 1.18 -0.0213&0 

1 1.46 -0.0213&0 

2 2.41 -0.0213&0 

3 3.4 -0.0213&0 

4 4.4 -0.0213&0 

5 5.4 -0.0213&0 

From the above table it can be seen that, as the value of time delay increases, settling time also increases. Again 

it can be seen that whatever be the value of time delay the steady state error remains constant. Also we can infer 

that, for larger values of delays the difference between the settling time and the delay value remains almost 

constant. Here the maximum value of time delay is taken as 5 sec because when the delay value is more than 

this value, the settling time becomes very high which cannot be taken in to consideration. 

 

Fig.4 Closed loop response of the given WMR system with 𝑊𝑊 =
400

𝑆+400
𝐼 and delay a) 0 .5sec b)1sec c) 3sec d) 

5sec 
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Fig 5: Closed loop response of the given WMR system with𝑊𝑊=
400

𝑠2+20𝑠+400
𝐼    and delay 0 sec 

Fig 5 shows the closed loop response of the given WMR system with 𝑊𝑊=
400

𝑠2+20𝑠+400
 𝐼 and the delay 0 sec. As in 

the previous case here also it can be seen that the given WMR system is stabilized by the proposed LMI  H∞ 

controller. Here also the optimum value of disturbance attenuation bound is found to be 0.146.  Table 3 gives the 

Performance specification of the above WMR system with  𝑊𝑊=
400

𝑠2+20𝑠+400
𝐼   having different values of time 

delay at optimum disturbance attenuation bound opt=0.146.  

Table 3: Performance specification of the WMR system with 𝑊𝑊=
400

𝑠2+20𝑠+400
𝐼 having different values of time 

delay  

Time 

delay 

(s) 

 opt=0.146 

Settling time(sec) Steady state error 

0 2.15 -0.0213&0 

0.1 2.16 -0.0213&0 

0.5 2.24 -0.0213&0 

1 2.44 -0.0213&0 

2 3.16 -0.0213&0 

3 4.1 -0.0213&0 

4 5.09 -0.0213&0 

5 6.09 -0.0213&0 

From the above table it can be see that, ,as the value of time delay increases , settling time also increases. Again 

it can be seen that whatever be the value of time delay the steady state error remains constant. Also we can infer 

that, for larger values of delays the difference between the settling time and the delay value remains almost 

constant. Hence It can be seen that even though the robust control of time delay systems are more complicated 

than that of the system without time delay, the proposed LMI  H∞ controller is successful in controlling the 

WMR with both delay and uncertain disturbances. 

7. CONCLUSIONS 

LMI control of WMR in the presence of disturbance as well as delay was discussed here. Also this paper gives a 

linearized model of the WMR in the presence of disturbances, uncertainties and delays.  A robust controller was 

synthesized using LMI algorithms. The LMI solvers in MATLAB were made use of for solving the inequalities. It 
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can be seen that, as the value of time delay increases, settling time also increases but the steadystate error remains 

constant. Also we can infer that for larger values of delays the difference between the settling time and the delay 

value remains almost constant. Simulation results show that the WMR system is stable with the proposed LMI  

H∞ controller. 
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